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Abstract—The growing demand for persistent underwater
surveillance has led to a need to increase reliance on undersea
distributed sensor networks for undersea target detection, classi-
fication and tracking. While tremendous progress has been made
in the technology of small, relatively inexpensive sensors over the
last decade, progress has lagged in the areas of sensor allocation
and sensor management. How best to deploy and reposition
sensors and small, unmanned vehicles (movable sensors) are
important research questions that must be addressed to realize
the intended use of these technologies.

Realistic tactical sensor deployment scenarios do not provide
the opportunity for a precise placement of sensors. Most likely,
initial deployment will be somewhat random (e.g., deployment of
sensors from a moving vessel). Additionally, sensors might have to
be repositioned due to random sensor failure, degradation, drift
due to ocean current or other environmental effects. While it is
possible, through the use of geometric probability, to estimate of
the coverage of randomly distributed sensor fields, optimum field
coverage can only be obtained through the use of deterministic
sensor positioning procedures. However, the initial randomly
distributed sensor field can be used as a starting point for the
optimal sensor placement. The same can be said for networks in
which sensors have drifted out of position, experienced failures,
or have (through random movement or collision) aggregated into
clumps. Sensor redeployment might also be necessary due to
changes in mission objectives. For example, improved intelligence
might necessitate the need to reconfigure the network in order
to detect the target of interest.

This paper addresses various issues relating to repositioning of
sensors in order to improve the coverage of the distributed sensor
network. In addition to more traditional assignment algorithms,
which minimize the total (equivalently, average) cost for moving
all sensors, we consider various cost-based assignment techniques
that aim to minimize maximal displacement. We argue that
for some scenarios, especially small to moderate networks of
sensors with limited fuel supply, the minimization of the maximal
displacement is preferable to the solution of the more traditional
assignment algorithm. The latter often produces results with
relatively large costs for at least some of its assignments. This
leads to diminished effectiveness over time for the sensor field.
Since fuel supply is limited for these unmanned vehicles, we
consider assignment procedures that will not deplete the vehicles’
resources during the maneuvering phase. Finally, we compare the
performance of several algorithms used to minimize the maximal
cost associated with repositioning a field of movable sensors.

I. I NTRODUCTION

Realistic tactical sensor deployment scenarios do not pro-
vide the opportunity for a precise placement of sensors. Most
likely, initial deployment will be somewhat random (e.g.,

Fig. 1. Initial and desired sensor locations for a 16 sensor field

deployment of sensors from one or more moving vessels).
For example, consider the scenario in Figure 1 in which
the locations marked by the triangles represent the initial
sensor positions. Notionally, the grid formed by the solid dots
represent the desired (optimal) positions for the sensors.

As mentioned earlier, we can imagine that the sensors have
been randomly scattered over the region by one or more crafts,
or they may have drifted into these positions over time. It is
also possible that there were originally several more sensors
and that, due to random failure, these are all that are remaining.
Here we use dashed circular lines to represent the hypothetical
detection region about each sensor. In order to increase the
coverage for the sensor field, the sensors must, in some way,
be redeployed to the positions denoted by the black dots.
Thus, our objective is to choose an assignment scheme which
associates each sensor with a final location (i.e., one of the
black grid locations).

Others have attempted to address this type of problem
through the use of collaborative techniques [1], [2]. That is,
each sensor continually adjusts its movement based on the
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Fig. 2. Coverage probability for a250× 250 area withr0 = 20

position of the other sensors. Thus, there is the assumption that
the sensor positions are known at all times. Given that there
is a cost overhead associated with communication, it seems
reasonable then that we consider the option of determining
the final locations for all sensors prior to the deployment of
any of them. In this scenario, the sensors can move to their
final destinations without expending energy in communicating
during the repositioning procedure.

It is possible to estimate the coverage provided by a set
of randomly distributed sensors over the surveillance region
(c.f. [3]). For example, Figure 2 displays the expected cov-
erage provided by a system of sensors randomly distributed
over a 250 by 250 square unit area. In this example, each
sensor has a detection range of twenty units. In general, the
coverage provided by the randomly distributed system will be
approximatelyρ = 1 − exp(−λπr2

0), whereλ is the sensor
field intensity (i.e., the number of sensors deployed per unit
area), andr0 is the detection range for the sensors.

The coverage is a function of sensor field intensity for
the system of randomly distributed sensors. For this example,
all sensors in the system have detection range ofr0 = 20.
However, due to sensor overlap, it is clear that the randomly
distributed system will not result in the optimal coverage
alignment (see Figure 1). It is therefore necessary to reposition
the sensors in order to improve system coverage.

II. A SSIGNMENTS

A. An Assignment Procedure

Sensors have limited energy supply. Thus energy consumed
during repositioning will no longer be available for surveil-
lance purposes. One should therefore consider assignment
schemes that, in some sense, minimize energy consumption.
For example, an assignment algorithm [4] can be used as a
baseline method to determine how to associate the sensors
with the optimum positions. One variant of the standard
assignment problem minimizes the total cost for the overall
system assignments:

Fig. 3. Sensor assignment with a conventional assignment algorithm

Assignment Optimization Problem

minimize
n∑

j=1

n∑

j=1

ci,jxi,j

subjectto
n∑

j=1

xi,j = 1 for i = 1, 2, . . . , n

n∑

i=1

xi,j = 1 for j = 1, 2, . . . , n

xi,j ∈ {0, 1}, for all i, j

Where ci,j = f(Di,j), f(D) is a non-negative and non-
decreasing function that represents the cost of moving distance
D, and Di,j is the distance from sensori to position j. In
this assignment problem a value ofxi,j = 1 corresponds to
sensori being associated with (equivalently, “moving to”) final
positionj. The first constraint guarantees that each sensor can
only move to a single final position; and the second constraint
guarantees that each final position is occupied by exactly
one (and only one) sensor. A key feature of the assignment
optimization problem shown above is that it can be solved as a
purely linear program (as opposed to an integer program) and
the optimal solution is guaranteed to be the integer result. The
conversion to a linear program is accomplished by replacing
the xi,j ∈ {0, 1} constraint withxi,j ≥ 0. This well-known
result (given in reference [4] as Theorem 8.5) leads to many
computationally robust assignment algorithms, since efficient
simplex-type algorithms can be applied to this problem to yield
the optimal integer result.

In Figure 3, we show the resulting assignment paths from
solving the standard assignment optimization problem for the
example from Figure 1. In this example, the overall system
cost of moving the sensors to the desired locations is 738
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Fig. 4. Optimal minimax sensor assignments

units. However, notice that one sensor has incurred a cost
of 162 units (22 percent of the overall system cost). This
is not uncommon with traditional assignment algorithms: In
general, the closest possible associations are made; however,
a few associations will be relatively costly. Because of limited
energy available to the sensors, the resulting poor performance
of sensors that have moved great distances is likely to diminish
the effectiveness of the network. It is thus more desirable
to achieve the assignment without these long paths whenever
feasible.

B. Minimizing Maximal Cost

We solve the problem of reducing long travel paths by
using a modified assignment scheme which minimizes the
maximum displacement over all sensors. The idea is to assign
the sensors to the locations in such a way as to obtain
more equitable energy consumption. For example, for the
same initial distribution of sensors as in Figure 1, using a
minimax assignment algorithm reduces the maximal energy
consumption from 162 to 87 (a reduction of 46 percent). In
achieving this reduction, the overall system cost (sum of paths)
increased only 7.86 percent from 738 to 796. The resulting
minimax assignment paths for the example from Figure 1 are
shown in Figure 4. The minimax improvement is achieved by
reducing the long path (length of 162 in Figure 3) from the
traditional assignment result. However, to meet the one-sensor-
to-one-position constraints, the algorithm must shuffle most of
the other paths. This gives the effect of the minor increase in
the sum paths with the major reduction of the maximal path.
However, this also illustrates that a simple modification of
the standard assignment result is not an effective approach to
reducing large paths. A formal method to directly solve the
minimax assignment problem is thus required.

The minimax assignment problem is stated in optimization
form as follows:

Minimax Assignment Optimization Problem

minimize maximum ci,jxi,j

subjectto
n∑

j=1

xi,j = 1 for i = 1, 2, . . . , n

n∑

i=1

xi,j = 1 for j = 1, 2, . . . , n

xi,j ∈ {0, 1}, for all i, j

where, as before,ci,j = f(Di,j), f(D) is a non-negative and
non-decreasing function that represents the cost of moving
distanceD, andDi,j is the distance from sensori to position
j. Once again,xi,j = 1 if sensor i is associated with
final position j, and xi,j = 0 otherwise. The conversion
from this integer constraint to a linear constraint (as in the
conventional assignment problem) is not guaranteed to create
an equivalent optimal integer solution in this case; thus, the
minimax assignment problem requires more computationally
complex algorithms.

C. Minimax Assignment Algorithms

We propose the following algorithm to solve the minimax
assignment problem for sensor path selection:

1) Use the traditional assignment algorithm to make the
initial sensor-location associations.

2) Save the current solution (call itpotential-sol) and
remove the link associated with the maximum cost from
the network: this can be done, for example, by assigning
it a very large value.

3) Apply the Assignment Algorithm to the modified net-
work.

(a) If a solution exists whose maximum cost is less than
that of thepotential-sol, go back to step 2.

(b) Otherwise, stop;potential-solis optimal.

Notice that, unlike the traditional (minisum) assignment
algorithm, this minimax assignment algorithm is iterative.
However, the estimates for the iterations monotonically con-
verge to an optimal solution. The estimates converge to an
optimal solution because at each step we remove a link (the
maximal link for the previous iteration) no longer than the link
previously removed. The program stops only when the removal
of a link results only in solutions containing a maximal link
that is larger than the last link removed from the network.
Thus, if DM is the maximal displacement of an optimal
solution, then eventually the algorithm will achieve a solution
with DM as the length of its maximal link. This algorithm
was used to create the solution shown in Figure 4. The
minimax assignment algorithm is a variant of one developed
by Corley and Golnabi [5], the primary difference being that
we update only one cost per iteration. In [5], all links of value
equal to the current maximum are effectively removed from
the network. Our simulations show that, depending on the
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Fig. 5. Minimax sensor assignments obtained using Krarup and Pruzan’s
algorithm withβ = 2

underlying assignment routine, the removal of multiple links
at once can lead to a significant increase in execution time.

III. R EDUCIBILITY OF M INIMAX TO M INISUM

Krarup and Pruzan [6] suggest a simple transformation for
reducing certain minimax integer programming problems to
minisum problems. Essentially, the idea amounts to transform-
ing the data in such a way as to exaggerate the contribution of
the larger network links. Thus, ifT is such a transformation,
then

ci,j > cr,p =⇒ T(ci,j) À T(cr,p)
ci,j = cr,p =⇒ T(ci,j) = T(cr,p)

where the symbolÀ meansfar greater than. The modified
cost matrix is then used in some minisum assignment pro-
cedure. For example, Krarup and Pruzan suggested using the
transformationT[x] = xβ , β > 1. Applying this transforma-
tion to the cost matrix used earlier leads to the result shown in
Figure 5. This suggests that raising all terms to an even higher
power (and thereby magnifying the spread of the distances)
might lead us the optimum solution. In Figure 6 we show the
result of applying the algorithm of Krarup and Pruzan with
β = 3. Note however that the total system cost is larger than
that obtained by our modified Corley-Golnabi procedure (as
shown in Figure 4). This remains the case even if we further
increase the power of the cost terms, as shown in Figure 7 for
β = 7.

Jorgensen and Powell [7] suggested a modification of the
method of Krarup and Pruzan which ensures that the transfor-
mation of each cost is greater than the sum of the transfor-
mations of all lesser cost terms. The procedure first requires
a re-indexing of the cost terms such thatc1 ≤ c2 ≤ . . . ≤ cn,

Fig. 6. Minimax sensor assignments obtained using Krarup and Pruzan’s
algorithm withβ = 3

Fig. 7. Minimax sensor assignments obtained using Krarup and Pruzan’s
algorithm withβ = 7

and settingT[c1] = 0. The remaining transformations are
obtained via:cj > cj−1 =⇒ T(cj) = 1 +

∑j−1
i=1 T(ci)

and cj = cj−1 =⇒ T(cj) = T(cj−1). For example, the
cost valuesc = (4, 7, 16, 19, 34, 36) are transformed into
(0, 1, 2, 4, 8, 16). Note the powers of two for all but the first
term for the transformed data. This is always the case when
the cost values are unique and can be problematic for large
systems. For example, it produces the estimate shown in Figure
8 for the minimax assignment example of Figure 4.
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Fig. 8. Minimax sensor assignments obtained using Jorgensen and Powell’s
algorithm

Fig. 9. Initial and desired sensor locations for a 9 sensor field

Before trying to understand why the resulting maximal
distance from Jorgensen and Powell is so much larger than
those obtained from other algorithms, let us first consider
a smaller problem. We consider a distribution of 9 sensors
with starting and desired locations as shown in Figure 9.
The resulting optimal minimax assignment (as determined by
our modified Corley-Golnabi method) is shown in Figure 10.
In Figure 11, we show the result of apply the algorithm of
Jorgensen and Powell to this smaller field of nine sensors.
Based on the match between Figures 10 and 11 it is clear that

Fig. 10. Optimal minimax assignments for the field in Figure 9

Fig. 11. Minimax sensor assignments obtained using Jorgensen and Powell’s
algorithm for the field in Figure 9

the transformation of Jorgensen and Powell does lead to the
correct solution for this small system. However, as mentioned
earlier, if all the distances between the sensors and the
potential locations are unique, then the transformations lead
to the powers of two:T[c2] = 1,T[c2] = 2,T[c3] = 4, . . . .
A system of sixteen sensors and sixteen possible locations for
each sensor, has256 unique sensor-location pairings. Thus,
we can expect significant rounding to occur for problems of
this type1 and, as demonstrated above, the estimates can be

1For example,T[c256] = 2254.

0-933957-35-1  ©2007 MTS



far from optimum. Thus, we use our modified Corley-Golnabi
algorithm to determine appropriate minimax paths in practice.

IV. CONCLUSION

This paper examines the problem of redistributing members
from a network of mobile unmanned sensors in order to
improve system-wide performance. It is assumed that energy
is consumed while the sensors migrate to their new locations,
thereby reducing the performance of the reconfigured network.
We considered various algorithms to determine sensor place-
ment while minimizing the maximal displacement required
for any individual sensor in the system. It is shown that a
modified version of the Corley-Golnabi algorithm is optimal
in the sense that it minimizes the maximal distance travelled,
while simultaneously providing a nearly minimal total cost
(sum distance) for the system. Future work will address the
collaborative movement of the sensors in order to maintain
coverage over time.
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